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Generalized Wannier functions: A comparison of molecular electric dipole polarizabilities
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Localized Wannier functions provide an efficient and intuitive means by which to compute dielectric properties
from first principles. They are most commonly constructed in a post-processing step, following total-energy
minimization. Nonorthogonal generalized Wannier functions (NGWFs) [Skylaris et al., Phys. Rev. B 66, 035119
(2002); Skylaris et al., J. Chem. Phys. 122, 084119 (2005)] may also be optimized in situ, in the process of
solving for the ground-state density. We explore the relationship between NGWFs and orthonormal, maximally
localized Wannier functions (MLWFs) [Marzari and Vanderbilt, Phys. Rev. B 56, 12847 (1997); Souza, Marzari,
and Vanderbilt, ibid. 65, 035109 (2001)], demonstrating that NGWFs may be used to compute electric dipole
polarizabilities efficiently, with no necessity for post-processing optimization, and with an accuracy comparable
to MLWFs.
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In this Brief Report, we explore the equivalence between
nonorthogonal generalized Wannier functions (NGWFs),1

generated using linear-scaling Kohn-Sham density functional
theory (DFT),3 and their orthonormal counterparts, particu-
larly maximally localized Wannier functions (MLWFs),2 both
recently reviewed in Ref. 4. We demonstrate the comparable,
high accuracy of the two formalisms for dielectric response,
laying the foundation for large-scale calculation of optical
properties.

We begin with the single-particle density-matrix defined for
a given set of Bloch orbitals |ψnk〉, where n indexes occupied
bands, k is the crystal wave-vector, and we suppress the spin
index for notational clarity, by

ρ̂ =
∑

n

∫
1BZ

dk|ψnk〉fnk〈ψnk|. (1)

Here, 1BZ is the first Brillouin zone corresponding to the
periodic unit cell of volume Vcell. A reformulation of such
Bloch states suitable for the study of spatially localized
properties was proposed by Wannier,5 whose eponymously
named functions are defined for a unit cell at the lattice vector
R, by

|wnR〉 =
√

Vcell

(2π )3

∫
1BZ

dk e−ik·R|ψnk〉. (2)

The orthonormality of Bloch orbitals is preserved,

〈wnR|wmR′ 〉 = δnmδRR′ , (3)

and we may choose the gauge freely, so that any prior unitary
transformation among the orbitals, |ψ̃nk〉 = ∑

m |ψmk〉Umnk,
may also give rise to a valid set of generalized Wannier
functions, via Eq. (2). Unoccupied states may be included
in the wannierization, while maintaining the same occupied
density, by appropriately transforming the occupancy of the
orbitals fnk, to give f̃nmk = ∑

p U
†
npkfpkUpmk. The density-

matrix may be readily expressed in terms of Wannier functions,

in the separable form proposed in Ref. 6, and given by

ρ̂ =
∑
RR′

|wnR〉knmR′−R〈wmR′ |, where (4a)

knmR = Vcell

(2π )3

∫
1BZ

dk e−ik·Rf̃nmk (4b)

is commonly known as the density kernel.
The extension of this formalism to nonorthogonal gen-

eralized Wannier functions (NGWFs) is both of practical
interest and utility. Orthonormality and spatial localization
are generally competing requirements,7 hence nonorthogonal
orbitals may form a more efficient basis in which to expand
short-ranged operators and, as a result, they are used exten-
sively in linear-scaling DFT approaches. We may express
these NGWFs, |φαR〉, simply in terms of the generalization
of the transformation matrices Uk to possible non-unitarity
matrices Mk; that is, Mnαk = 〈ψnk|ψ̃αk〉, whereafter f̃αβk =∑

n M
†
αnkfnkMnβk. We use Latin and Greek letters to index or-

thonormal and nonorthogonal sets, respectively, and implicitly
sum over repeated index pairs.

In the nonorthogonal case, the density-matrix may be
expanded in separable form via the tensor contraction

ρ̂ =
∑
RR′

|φαR〉Kαβ

R′−R〈φβR′ |, where (5a)

K
αβ

R = Vcell

(2π )3

∫
1BZ

dk e−ik·RSαγ f̃γ δkS
δβ, (5b)

and the price to be paid for nonorthogonality is a nontrivial
metric tensor given by Sαβ = 〈φαR|φβR′ 〉δRR′ , which de-
fines the interrelationship between covariant vectors, |φαR〉 =
|φβ

R〉Sβα , and contravariant vectors (NGWF duals) |φα
R〉 =

|φβR〉Sβα . The contravariant metric Sαβ in Eq. (5b) is defined
such that Sαγ Sγβ ≡ δ β

α , and is also independent of the lattice
vector. Orthonormality is thus replaced by the general tensor
expression

〈φαR|φγ R′ 〉Sγβ = Sαγ

〈
φ

γ

R

∣∣φβ

R′
〉 = δ β

α δRR′ . (6)
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Numerous optimization procedures have been developed
for ab initio Wannier functions. A widespread approach
involves their construction in a post-processing step, com-
puting the Unmk or Mnαk matrices, and then the generalized
occupancies f̃k, following the computation of the delocalized
orbitals. However, it has been recognized, and utilized in
the context of large-scale calculations for some time,8 that
localized Wannier functions may also be optimized directly in
situ; that is, during the process of solving for the electronic
structure. In the latter, the basis expansion of the functions
{φαR (r)} and the corresponding density kernel K

αβ

R must
be optimized together, reconstructing the delocalized orbitals
afterwards only if necessary.

A variety of plausible criteria may also be employed for
Wannier function optimization in either case, such as energy
downfolding9 or maximal Coulomb repulsion,10 or, as used in
this work, total-energy minimization or spatial localization.
Depending on their definition, these criteria may or may
not uniquely define the Wannier functions, in that they may
admit some residual gauge freedom. A particularly efficacious
measure for localization is the second central moment which,
for a set of Wannier functions {|wnR〉} takes the form of the
spread functional,


 =
∑

n

[〈wn0|r2|wn0〉 − 〈wn0|r|wn0〉2], (7)

where the generalization to the nonorthogonal case does not
yield straightforward physical interpretation. MLWFs2 are
those orthonormal Wannier functions generated by unitary
transformations Unmk that minimize 
, for a fixed set of
orbitals. MLWFs are usually computed in a post-processing
procedure, using an implementation such as WANNIER90,11

and have been widely adopted as an accurate minimal basis
with which to compute numerous ground-state and excited-
state properties, as well as to augment DFT with many-
body interactions.4 MLWFs have been used to great effect,
moreover, in the context of molecular dynamics, particularly
interesting examples including the calculation of the dielectric
permittivity and dipolar correlation of liquid water,12 as well
as its dynamical charge and dipole tensors.13

NGWFs, unlike their orthonormal counterparts, are more
commonly optimized in situ, as a by-product of total-energy
minimization with respect to the density-matrix, for example,
in the ONETEP linear-scaling DFT code.1,14 In the latter,
NGWFs are expanded in a fixed underlying basis of periodic
cardinal sine functions (also known as psinc15 or bandwidth-
limited δ-functions), whose spatial finesse is determined by
a single variational parameter, the kinetic energy cutoff of
the equivalent plane-wave basis. The NGWFs are then those
functions, when traced with their corresponding optimized
density kernel, which reproduce the ground-state density-
matrix, whence the ground-state energy

E0 = min
n

E [n] = min
ρ̂

E [ρ̂]ρ̂=ρ̂2

= min
K,{φ}

E [K,{φ}]K=KSK . (8)

In practice, in order to extremize the total-energy with
respect to idempotent density-matrices, two nested conjugate-
gradient variational minimization procedures are performed.

In the inner loop, the energy is minimized with respect
to the elements of the density kernel, for a fixed NGWF
expansion, and in the outer, the density kernel is kept fixed
while the total-energy is minimized with respect to the NGWF
psinc expansion. A number of similar methods have been
proposed in which equations of motion generate optimized
nonorthogonal functions.8

An intuitive interpretation of Wannier functions is furnished
via the modern theory of polarization,16 in that changes in their
centers 〈r〉nm = 〈wn0|r|wm0〉 exactly reproduce, and thus may
be used to efficiently calculate, changes in the polarization of
insulating systems. The change in electronic polarization δP,
subject to a gap-preserving perturbation, may be expressed as

δP = − 2e

Vcell

N∑
n

δ〈r〉nn (if f̃nm = δnm,n � N ), (9a)

= − 2e

Vcell

[
δK

αβ

0 〈r〉βα + K
αβ

0 δ〈r〉βα

]
, (9b)

where the k-independence of the occupancies (also spin
degenerate) implies that it is sufficient to consider only
the R = 0 term. Here, respectively, we have provided the
orthonormal case for N occupied bands, and the more general,
nonorthogonal case.

It has been shown that close-to-orthonormal Wannier
functions generated by means of direct minimization of an
appropriately constructed functional may be used to efficiently
compute dielectric properties.17 It is of importance, partic-
ularly for linear-scaling methods, to generalize this result
and verify that in situ optimized NGWFs can reproduce
electronic response properties with the same reliability as that
of the well-documented MLWFs, as NGWFs are increasingly
being used in large-scale methods for spectral partitioning and
dielectric properties, particularly in molecular systems.18 The
simplest such response property is perhaps the high-frequency
(termed “clamped-ion” or “static”) linear dipole polarizability
tensor

αij = lim
ω→∞ αij (ω) = ∂Pi

∂Ej

∣∣∣∣
δRion=0

, (10)

where E is an applied electric field within the dipole approx-
imation. This polarizability is somewhat different from that
which is most frequently probed experimentally, namely, the
static or visual frequency regimes, and neglects the response
of the ionic positions.

Two different Kohn-Sham DFT packages were used in order
to compute polarizabilities within the NGWF and MLWF
formalisms; respectively, the ONETEP linear-scaling code1,14

and a combination of a plane-wave pseudopotential package29

and the WANNIER90 (Ref. 11) code. An example of each type
of function is depicted in Fig. 1. A set of well-isolated, closed-
shell molecules were selected, so that a sawtooth-potential
representation of the electric field could be used, with the
potential boundary maximally distant from the molecules, up
to a maximum field value of ±8.0 × 10−5 Ha e−1a−1

0 , in inter-
vals of 2.0 × 10−5 Ha e−1a−1

0 , for all systems. The response
remained well within the linear regime at these field values,
which lay well below the threshold for Zener breakdown.
The rates of change in polarization were calculated using
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FIG. 1. (Color online) Wannier functions, NGWF (left) and
MLWF (right), of predominantly oxygen pz2 (highest occupied, 1b1)
character in H2O at zero applied field, with isosurfaces at one-sixth of
their respective maxima. Both types retain some residual arbitrariness
following optimization.

linear regression of finite-difference data. Identical norm-
conserving pseudopotentials30 were used in both cases; having
been generated in the required formats, the Perdew-Burke-
Ernzerhof (PBE) exchange-correlation approximation28 and
the same run-time parameters and analysis were used for both
codes so far as possible. Zero-field ground-state geometries
were optimized using ONETEP in cubic simulation cells of
side length 40a0 (50a0 in the case of naphthalene C10H8).
The density and potential were fully reset to those of atomic
superpositions upon each incrementation of the field. An
equivalent plane-wave cutoff of 1000 eV, 
-point Brillouin

zone sampling, no density-kernel truncation, and NGWFs with
a 10a0 radius cutoff were used.

In the case of nonaxially symmetric molecules, random
initial guesses for the MLWFs were regenerated at each
incrementation of the electric field. For axially symmetric
molecules such as CO, CO2, and N2, however, the maximal
localization condition does not uniquely define the MLWF
centers under rotations about the axis, as discussed in Ref. 31.
While the sum of centers, and hence the transverse response,
should be well defined, in practice this unbroken symmetry
results in excessively noisy linear-response data. It was found,
however, that reinitializing the MLWFs to s orbitals at each
field value, with centers coinciding with a set of zero-field
MLWFs, proved sufficiently robust to obtain excellent linear
fitting. No such measures were necessary in the case of ONETEP

NGWFs, due to an effective symmetry breaking introduced by
the underlying real-space psinc grid.

The isotropic and anisotropic parts of the polarizability
tensor α are defined, respectively, as

ᾱ = 1
3 tr[α], κ =

√
3
2 tr[α2] − 1

2 (tr[α])2, (11)

our computed values of which using NGWFs and ML-
WFs are shown in Table I. The quadratic mean fractional
discrepancy between the isotropic parts was 8.0 × 10−3,
while the discrepancy was greater for the anisotropic parts,
at 4.1 × 10−2. As judged by the arithmetic mean frac-
tional discrepancies (given henceforth in parentheses), the
NGWFs tended to provide slightly larger isotropic parts

TABLE I. Isotropic (ᾱ) and anisotropic (κ) polarizabilities (e2a2
0 Ha−1) from DFT using nonorthogonal (NGWF) and orthonormal (MLWF)

Wannier functions. Previous Gaussian-basis calculations (Ref. 28) and experimental values are included.

ᾱ NGWF MLWF Gaussian Experiment

H2O 10.58 10.47 10.76,a 7.4b 9.64,d 9.79f

NH3 15.28 15.24 15.63,a 12.1b 14.56,d 18.9e

CH4 17.70 17.49 17.74,a 14.8b 17.27,d 17.5e,f

C2H4 28.50 28.39 28.77,a. 25.6b 27.70,d 28.69f

CO 13.64 13.53 13.73,a 12.1b 13.09,d 12.8,e 13.16f

CO2 18.00 17.85 18.06,a 14.8b 17.51,d 19.6,e,f 17.48f

N2 11.99 11.87 12.31,a 10.8b 11.74,d,f 11.5e

C10H8 122.8 123.0 121.76c 117.4,g,h 118.9i

κ NGWF MLWF Gaussian Experiment
H2O 0.16 0.14 0.14a 0.67d

NH3 2.45 2.64 2.70a 1.94d

C2H4 12.18 12.03 11.94a 11.4d

CO 3.53 3.54 3.55a 3.57d

CO2 13.88 13.96 13.70a 13.83,d 13.70f

N2 4.50 4.55 4.83a 4.59,d 4.45f

C10H8 96.1 94.8 94.13c 86.9,g 79.0,h 63.6i

aStatic polarizability in a d-aug-cpVTZ basis (Ref. 19).
bStatic PBE polarizability in 6-311++G(d,p) basis at B3LYP/6-311G** optimized geometries (Ref. 20).
cStatic polarizability in Sadlej pVTZ basis (Ref. 21).
dCompiled in Ref. 19, based on analysis of anisotropy data (Ref. 22).
eCRC Handbook (Ref. 23).
fExtrapolated Rayleigh scattering (Ref. 24).
gAnisotropic refraction (Ref. 25).
hLaser Stark spectroscopy (Refs. 25 and 26).
iOptical measurements at 632.8 nm in solution (Ref. 27).
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TABLE II. Probable fractional errors in molecular electric polar-
izabilities computed using NGWFs and MLWFs.

�ᾱ/ᾱ NGWF MLWF �κ/κ NGWF MLWF

H2O 1 × 10−4 8 × 10−5 NH3 8 × 10−3 8 × 10−3

NH3 3 × 10−3 5 × 10−5 NH3 4 × 10−2 5 × 10−4

CH4 1 × 10−4 5 × 10−5 CH4 – –
C2H4 3 × 10−5 3 × 10−5 C2H4 2 × 10−4 2 × 10−4

CO 2 × 10−4 3 × 10−4 CO 2 × 10−3 2 × 10−3

CO2 2 × 10−5 2 × 10−4 CO2 5 × 10−5 4 × 10−4

N2 6 × 10−6 3 × 10−4 N2 5 × 10−5 2 × 10−3

C10H8 4 × 10−4 4 × 10−4 C10H8 1 × 10−3 1 × 10−3

(by 6.6 × 10−3), and also anisotropic parts (by 1.3 × 10−3),
than the MLWFs. Perhaps serendipitously, the NGWF values
lay closer than the MLWF results, for the isotropic parts,
in all cases, to the previous DFT (PBE) calculations of
Ref. 19, computed using a sophisticated time-dependent
coupled-perturbed method with a triple-ζ Gaussian basis set;
the quadratic (arithmetic) mean discrepancies with respect
to these previous results were 1.5 × 10−2 (1.3 × 10−2) and
2.2 × 10−2 (2.0 × 10−2), respectively. The trend was reversed
for anisotropies.

Polarizabilities calculated using the related Wannier func-
tion varieties agree rather well in spite of the significant tech-
nical dissimilarities between the ab initio packages generating
them, and there are a number of possible origins for the
small discrepancies observed. First considering the NGWF
and MLWF values, both based on the plane-wave formalism
and using the same ionic geometry, the NGWF method is the
more approximate in that it spatially truncates the Wannier
functions and the kinetic-energy operator. Moreover, these
methods differ in their handling of pseudopotentials and,
substantially, in their energy-minimization algorithms. With
respect to the previous Gaussian-basis results of Ref. 19, the
possible origins for discrepancy are manifold, most notably,
the ionic geometries employed differ and the latter method
treats the core electrons explicitly.

The probable errors (arising from the linear fit to the data)
in the isotropic and anisotropic polarizabilities, denoted �ᾱ

and �κ , respectively, and given by

�ᾱ =
√√√√∑

ij

(
∂ᾱ

∂αij

�αij

)2

= 1

3

√∑
i

(�αii)2, (12a)

�κ = κ−1

√√√√√∑
ij

[(
3αji

2
−

∑
k

αkk

δji

2

)
�αij

]2

, (12b)

were computed using the unbiased variance estimate (�αij )2

on each polarizability component αij , and are shown in
Table II. The noise in the data for NGWFs is somewhat more
system dependent, as the NGWF truncation depends on the
ionic geometry, and higher than in the MLWF case for most
of the molecules studied. The quadratic (arithmetic) mean of
the ratio of the estimated error in the isotropic polarizability ᾱ

to its value was estimated at 1 × 10−3 (4 × 10−4) for NGWFs
and 2 × 10−4 (2 × 10−4) for MLWFs. Correspondingly, for
the anisotropic part �α, we estimated these ratios to be,
respectively, 1 × 10−2 (7 × 10−3) and 3 × 10−3 (2 × 10−3).
Nonetheless, the probable errors in the linear fits to the
polarizability data were extremely small using both methods,
and inconsequential with respect to the expected errors in the
approximate functional.

In conclusion, we have shown that nonorthogonal Wannier
functions optimized in situ may be used to compute molecular
polarizabilities with an accuracy comparable to MLWFs post-
processed from plane-wave DFT. This result is promising for
the computation of numerous dielectric properties, and the
full application of linear-scaling Wannier function analysis
to large systems. A promising avenue for future work is
the generalization of a method for the dielectric response in
extended systems, such as that described in Ref. 32 and applied
to solids in Ref. 17, to the linear-scaling NGWF formalism.
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